S-adenosylmethionine and methylthioadenosine inhibit cancer metastasis by targeting microRNA 34a/b-methionine adenosyltransferase 2A/2B axis
نویسندگان
چکیده
MicroRNA-34a (miR-34a) is down-regulated in colorectal cancers (CRC) and required for interleukin-6 (IL-6)-induced CRC metastasis. Mice lacking miR-34a developed more invasive cancer in a colitis-associated cancer model. In the same model, S-adenosylmethionine (SAMe) and methylthioadenosine (MTA) inhibited IL-6/STAT3 and lowered tumor burden. SAMe and MTA reduce the expression of methionine adenosyltransferase 2A (MAT2A) and there are consensus binding sites for miR-34a/b in the MAT2A 3'UTR. Here we examined whether SAMe/MTA influence miR-34a/b expression and cancer metastasis. We found SAMe and MTA raised miR-34a/b expression in CRC cell lines, inhibited migration and invasion in vitro and liver metastasis in vivo. Like CRC, MAT2A and MAT2B expression is induced in human pancreas and prostate cancers. Treatment with SAMe, MTA, miR-34a or miR-34b inhibited MAT2A expression mainly at the protein level. MAT2B protein level also fell because MAT2A and MAT2B enhance each other's protein stability. Overexpressing miR-34a or miR-34b inhibited while MAT2A or MAT2B enhanced CRC migration and invasion. Co-expressing either miR-34a/b had minimal to no effect on MAT2A/MAT2B's ability to increase migration, invasion and growth. Taken together, MAT2A and MAT2B are important targets of miR-34a/b and SAMe and MTA target this axis, suppressing MAT2A/MAT2B while raising miR-34a/b expression, inhibiting cancer metastasis.
منابع مشابه
L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine.
In mammals, methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (AdoMet) synthesis, is encoded by two genes, MAT1A and MAT2A. In liver, MAT1A expression is associated with high AdoMet levels and a differentiated phenotype, whereas MAT2A expression is associated with lower AdoMet levels and a dedifferentiated phenotype. In the current study, we examined regulati...
متن کاملS-Adenosylmethionine and Methylthioadenosine Inhibit b-Catenin Signaling by Multiple Mechanisms in Liver and Colon Cancer
S-Adenosylmethionine (SAMe), the principal methyl donor that is available as a nutritional supplement, and its metabolite methylthioadenosine (MTA) exert chemopreventive properties against liver and colon cancer in experimental models. Both agents reduced b-catenin expression on immunohistochemistry in a murine colitis-associated colon cancer model. In this study, we examined the molecular mech...
متن کاملMicroRNA-21-3p, a Berberine-Induced miRNA, Directly Down-Regulates Human Methionine Adenosyltransferases 2A and 2B and Inhibits Hepatoma Cell Growth
Methionine adenosyltransferase (MAT) is the cellular enzyme that catalyzes the synthesis of S-adenosylmethionine (SAM), the principal biological methyl donor and a key regulator of hepatocyte proliferation, death and differentiation. Two genes, MAT1A and MAT2A, encode 2 distinct catalytic MAT isoforms. A third gene, MAT2B, encodes a MAT2A regulatory subunit. In hepatocellular carcinoma (HCC), M...
متن کاملS-Adenosylmethionine and methylthioadenosine inhibit β-catenin signaling by multiple mechanisms in liver and colon cancer.
S-Adenosylmethionine (SAMe), the principal methyl donor that is available as a nutritional supplement, and its metabolite methylthioadenosine (MTA) exert chemopreventive properties against liver and colon cancer in experimental models. Both agents reduced β-catenin expression on immunohistochemistry in a murine colitis-associated colon cancer model. In this study, we examined the molecular mech...
متن کاملInduction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells
We previously showed that S-adenosylmethionine-mediated hypermethylation of the PTEN promoter was important for the growth of tamoxifen-resistant MCF-7 (TAMR-MCF-7) cancer cells. Here, we found that the basal expression level of methionine adenosyltransferase 2A (MAT2A), a critical enzyme for the biosynthesis of S-adenosylmethionine, was up-regulated in TAMR-MCF-7 cells compared with control MC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017